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Abstract. We consider the one-dimensional asymmetric exclusion process with an impurity.
This model describes particles hopping in one direction with stochastic dynamics and a hard core
exclusion condition. The impurity hops with a rate different from that of the normal particles
and can be overtaken by these particles. We solve this model exactly and give its phase diagram.
In one of the phases the system presents a shock, i.e. a sharp discontinuity between a region of
high density of particles and a region of low density. Density profiles and relevant exponents are
explicitly calculated. These exact results for systems of finite size are consistent with anomalous
diffusion laws observed in infinite systems.

1. Introduction

The one-dimensional asymmetric simple-exclusion process (ASEP) is a model of particles
hopping in a preferred direction with stochastic dynamics and hard core exclusion. A
model of this kind usefully describes many different physical phenomena such as hopping
conductivity, diffusion of particles through narrow pores, growth processes and traffic flows
[1-4]. The mathematical relevance of the ASEP is that it is a discrete version of the Burgers
equation in the appropriate scaling limit, and a lot of work has been devoted to the derivation
of the hydrodynamical limit from microscopic dynamics [5, 6]. It is well known that the
Burgers equation exhibits shocks. The question of the existence and description of these
shock structures at the microscopic level has been studied both numerically and analytically
[7-15], and several models have been proposed. In [14], the authors calculated the shape of
a shock as seen from a second class particle. These second class particles overtake holes but
not normal particles, while normal (or first class) particles overtake both holes and second
class particles. A more direct way to provoke a shock [10] is to introduce a ‘slow’ link in
the system: the particles can cross this link with rgtevhich is less than the crossing rate
of all the other bonds (taken equal to 1). A mean-field analysis, supported by numerical
simulations, shows that a shock appears on the macroscopic level, miseless than a
critical valuer. (function of density). The authors measured the width of the shock as a
function of the sizeL of the system and showed that it scalesIa$§’ or L¥? depending
upon whether particle—hole symmetry exists or not (i.e. whether the density of particles is
equal to% or not). This model has not yet been solved exactly.

In this paper, we study the ASEP on a ring with one defective particle (say an impurity)
that jumps with a ratex (<1) less than that of other particles and can be overtaken with
rate 8 (<1) by normal particles (this model has been introduced in [7] and [16]).
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We use the matrix technique introduced in [14,17,18] for solving exactly certain
exclusion processes. This enables us to derive analytic formulae for the current in the
system and for the density profile (defined as the mean occupation of a site in the stationary
state). In the thermodynamic limit the system can exist in different phasesa,tfgplane.

We determine the relevant correlation lengths and the critical exponents that characterize
the divergence of these correlation lengths on the lines bounding the different phases.

With this exact solution, we show that there exists one phase of the system in which
the impurity causes a shock, i.e. a spatial segregation between a region of high density of
particles and a region of low density. Because of the fluctuations of the position of the
impurity, the width of the shock always scalesa4? whether the particle—hole symmetry
exists or not.

This paper is organized as follows. In section 2 we describe the model and write the
weights of configurations in the stationary state as a trace of an infinite-dimensional matrix.
In section 3 we obtain exact results for finite systems and demonstrate the appearance of a
shock in the thermodynamic limit. Section 4 is devoted to the calculation of density profiles
and concluding remarks are given in the last section.

2. The model. Expression of the stationary state with a matrix ansatz

We shall consider the totally asymmetric exclusion process on a lattiéetol sites; the
sites are numbered from 0 fa There areV ‘normal’ particles (0< N < L), denoted by 1,
in the system, and one impurity, denoted by 2. Eachisi#esither occupied by one normal
particle, or by the impurity, or is empty. The lattice has periodic boundary conditions: site
i is the same as site+ L + 1.

Stochastic dynamical rules govern the evolution of the system. During the infinitesimal
time step d, any bond(i, i 4+ 1) (with 0 < i < L) evolves as follows:

10 — 01 with rate 1
20 — 02 with ratex 1)
12 — 21 with rate

All other transitions are forbidden.

In the particular case where = 1 and 8 = 0 the impurity is identical to a normal
particle; it can be considered as a tracer or a ‘tagged’ particle. The fluctuations of the
position of a tracer have been studied in [18]. Whers= 1 andg = 1, the impurity is a
second class particle which has been used in the study of shock fluctuations in [14].

We shall work in the relative frame of the impurity unless the contrary is specified,
i.e. we use the translation invariance of the system to relabel the sites, so that the impurity
always remains on site nhumber 0.

The system has(,f,) = WLM, configurations. In the long time limit, the system
reaches a stationary state in which each configuratidvas a stationary probability(C).

The computation of the(C)’s is non-trivial; they can be expressed [14, 16] as a trace of a
product of non-commuting operatof$, £ and A:

1
C)==—Tr (A
P VAR

L
(TiD+(1—Ti)E)> 2

1

wherer; = 1 if site i is occupied by a particle in configuratieghand z; = O if it is empty.
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The matricesD, E and A satisfy the following algebra:

DE =D+ FE
DA = 1A
=5 (3)
1
AE = —A.
o
The normalization factoZ; y ensures tha} . p(C) = 1 and can be written as a trace:
Zp.yn=Tr(AG. n) 4)
with
L L
Giv= Y 8<N - Zn) (t:D+ (1= 1)E). )
{r;=0,1} i=1 i=1

Hered(x) is the Kronecke®, o; hence the matribxG . n is the sum of all matrices formed

by multiplying N D’s and (L — N) E’s in all possible orders. The fact that the weights
p(C) given by (2) are stationary can be proved by using the same arguments as given in
[14,17,19]. Therefore we shall not give the proof here. As shown in [17] the matfices
and E have to be infinite-dimensional unlegst- 8 = 1. A useful representation of algebra

(3) is the following:

1100. 1000 .

0110 1100

00 1 1 0110
D=10 00 1. E=10 011 A=V)iWl (6
where

To ensure thatW|V) = 1, we takex? = (@ + B — 1)/aB. We remark thatV) is a right
eigenvector ofD and that(W| is a left eigenvector of':

1
DIV)= |V 7
V) =4IV} @)
1
(WIE = —(W]. ©)
o

3. Exact results for the current of first class particles and for the speed of the
impurity

The fundamental quantity to calculate is the normalization fadioy, = Tr(AG. y) =
(W|GL.§|V) which plays a role analogous to the partition function in equilibrium statistical
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mechanics. The following exact formula is derived in appendix A:

v =aan W) (S ) (0 26w (57))
Ta-ma-p ;ifﬂm;%;%QV+p>Qr—g+q)(1;aY<1;ﬂf'
(©)

From this exact formula the asymptotic behaviourZgfy in the thermodynamic limit
(L = oo, N - o0, the densityp = LLH being constant) can be extracted. Different forms
are obtained in different ranges @f 8 and p:
ep<B<l—caoandp<l—-a<§

Bl—a—p) (v)

AN LB p et A=) (9
ef<p<l—u
ZL,N ~ (1_O{_IB) ! (11)

A—a)d-p) N (L—a)Vpr (A= p)r N

_apla+p—1pd-p (L
Z ~ AT 12
LN = B p2atp—12 L (12)

ef<l—a<pandl-a<B<p

a(p— P) (v)
A1-B)p+a—1pN1L-pLN

The process is invariant when the particles and holes are interchanged, the direction of
motion reversed and and g exchanged (charge conjugation and reflection symmetry [20]).
Analytically, the following symmetry is thus satisfied:

~

ZiN> (13)

N—-L—-N

—-1-

P Y (14)
oa— f

site number — site numberL + 1 —i.

This fact can be checked on equations (10) to (13).
In the stationary state, the spe®dof the impurity in the reference frame of the lattice
can be expressed with the help of algebra (3) as follows:

V =aE(ti1 =0t =2) - BE(ti-1 = 1|t = 2)
(WIEGL 1 n|V) = B(W|GL_1n-1D|V)

Zin
_Zian—Zp-1n-1 (15)

Zi.N

Here E is the expectation in the stationary state, @) the conditional expectation.
Similarly the current of the first class particles in the frame of the lattice is

VARENY

Z Zi_1.N-
+(1=p) L-1N-1 _ oV + L-1N-1 (16)

J=p
LN Zp N VAR
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The second term on the RHS of (16) has a direct interpretation: it is the current of first class
particles in the relative frame of the impurity. The proof of (16) is given in appendix B.
With the help of the asymptotic expressions #yr y (10)—(13), we obtain the following
formulae for the current and the speed’:
eforp<pB<l—aandp<l—-a<B:J=pl—-—p)andV =a —p
eforf<p<l—-aJ=pla—-pB)+pl—-—a)andV =a -4
eforl—a<p<pB:J=pd—p)andV =1-2p
eforf<l—a<pandl-a<B<p: J=pl—p)andV =1-—p
The results for the casgé < 1 — o were previously obtained in [16] where a different
expression was used fdr, ;. The derivatives of the current and the speed are discontinuous
at the boundaries of the domains that appear above; therefore, following [21], the phase
transition can be considered to be of first order. In the plfasep < 1 — «, the speed of
the impurity does not depend upon the dengityf the particles [16]: this suggests that the
impurity moves as if the site ahead of it was always empty and the site behind it always
occupied. In the next section, by calculating explicitly the density profile in the whole range
of @ and 8, we show that this phase presents a density shock: the particles pile up behind
the impurity.

4. Computation of the density profile

We denote by:; the expectation that siteis occupied in the stationary state, knowing that
the impurity is at site zero. With the help of the algebra (3), it is straightforward to write
the following identity forn;:

& (WIGi1,DGL iy palV)

n=FE(rt =11n=2) = Z Z . (17)
LN

p=0
Here we have the convention th&f , = 0 whenevery < 0 org > k. It is not easy to
calculaten; from (17); however, its discrete derivative can be brought to a much simpler
form:
1 N-1
ni —niy1 = m(W| X(; Gi1,DGrin-—p-1—GipDGr i1 n—p-alV). (18)
. e

We substitute the general identi€y; = G;-1x-1D + G;-14E in equation (18):
N-1
Z Gi1,DGr in—p-1—GipDGL i 1N p1
p=0

N-1

=Y Gi1,DIDGL i an-—p2+EGLi1np1)

p=0

—(Gi—1,p-1D+ G;_1 ) E)DG_i_1 N—p-1.
The first and third terms cancel each other. The explicit representation (6) provides that
DE — ED = |1)(1]. We thus obtain

N-1
WIGi—1 ,|1 DG —i—in—p-1]V
nz_nH—l:Z( |Gi—1,p (UG L—i—1,n—p-1l ). (19)
oy ZiN
The values ofi; andn; can be determined directly:
Tr(ADG_1 y— Tr(AEG,_ 1Z,_
0y — ( L-1N 1)=1_ ( Ll,N)= _1Ziaw (20)

Zp N Zp N a Zpn
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_ Tr(DAGL-anv-1D) _ 1Zi N

n = 21

t ZL.N B Zin @D
Expressions (19) and (20) or (21) allow a full knowledge of the density profile
n;(i =1,..., L) for any finite system and can be used for exact numerical computations.

We calculated the density profile explicitly in the thermodynamic limit with the help of
the asymptotic expressions @f, y given in (10)—(13). These asymptotic expressions were
substituted in formula (19). After carefully determining the term that dominates the sum in
different sectors ok, 8 and p, the saddle point method is applied and the density profile is
obtained. We thus derived the phase diagram of the system given in figure 1. There are six
distinct phases. By using the symmetry (14), it is enough to describe precisely only four
out of the six phases.

Vi

1-p 1 a
Figure 1. The phase diagram of the system.

The phase diagram is divided into two domains by the ne 1 — «. On this line the
matricesD, E and A can be chosen as scalai®:= %, E = % A = 1; each configuration

then has the same stationary probabilipfC) = 1/(,%,) and the density profile is flat, i.e.
n; = p for all i.

In the domaing > 1 — « (figure 2), the impurity creates a local disturbance in the
system and the density profile in the bulk is flat in the thermodynamic limit. It is possible
to distinguish three phases in this domain.

41. Phasell—a < B <p

In this casen; =1 — %(1 — p) andn; = p; the density profile decreases exponentially
from n; to its bulk valuep; the disturbance due to the impurity has a characteristic length
& such that in the intermediate scaledli <« L:

o when o2 < (1592 (0 — p) ~ exp(—i/&) with § 1 = —In(L— (p — 14+a) s 7).
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Figure 2. Typical density profiles in thgg > 1 — « sector withL = 70 andp = 0.5. The
curves represent the probability (vertical axis) that a sifeorizontal axis) is occupied in the
stationary state. For curve | in phasexl= 0.9 andg = 0.4. For curve Il in phase llg =1

andg = 1.
o When —%— > (1597 (i —p) ~ #exp—i/€) with €77 = —2In(v/Bp +
VA =BT =p)). In this case, we note thgtdiverges as?=£) whenp — .

(p—P)?

42. Phaselll—a<p<§

Heren, = 1—%(1—,0)2 >np = %f. There is no longer a characteristic length that measures
the size of the disturbance in the vicinity of the impurity. The density profile reaches its
bulk valuep algebraically likei~¥/? at a distance from the impurity; for 1<« i < L, we

have

_ [pQ=p 1

Mi—Nig1 =Np_jy1— L PR (22)

This formula agrees with the one derived in [14] for the special casep = 1.

4.3. Phaselllp <1—a < B
By (14), this phase is symmetric to phase |I.

In the domaing < 1—« (figure 3), the impurity plays the role of a moving obstacle that
can affect the system on a global scale by provoking a discontinuity in the density profile
of first class particles.

44. PhaselVp < <l—«

Heren; = p is less tham, = pl‘T"’, and the characteristic length measuring the range
of the effect of the impurity is given byt = —In(1 — (8 — p)=£=%). That correlation

FAP)
length diverges ag; 25—~ whenp — B.
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Figure 3. Density profiles in the8 < 1 — « sector withL = 70 andp = 0.5. For curve IV in
phase IV,« = 0.1 andg = 0.7. For curve V in phase V (the shoclg,= 0.25 andg = 0.25.

45. PhaseVB <p<l—a«

In this case, we have; = 8 andny, = 1 — «. The presence of the unique impurity is
enough to provoke a macroscopic shock in the system; a low density regiom ranging
from site 1 to sitexgL is separated by a sharp interface from a region of high density
orn = 1 —«a ranging from sitexgL to site L. The position of the shockg is determined by

o = Bxo+ (L —a)(l—x0). When L is large, the following expression can be derived in
terms of the rescaled variable=i/L:

_ _ 2 _ 2
dn(x):\/ L (1—a—ﬁ)2exp(—L(1 a— B)2x xo)>_

dx 2n(p(a — B) + (1l —a)) 200 —p)+ A —))
(23)

Asymptotically,n(x) is an error function interpolating between the regions of low and high
density with width scaling a&*/2.

4.6. Phase VI8 <1—«a < p.

By (14), this phase is symmetric to phase IV.

5. Discussion and conclusion

The exact results obtained above for a finite system can be related, through a finite-size
scaling analysis, to results given in [9,12] for infinite systems. In these articles, the
authors consider exclusion processes on the infinite line with initial shock configurations
corresponding to an average density (po;) on the left (right) of the origin; they track

the shock with the help of a second class particle. The fluctuations of the position of that
second class particle can be identified with the fluctuations of the shock [22]. For a system
of finite size L, let us denote by (L, ¢) the width of the shock measured at timend
averaged over all possible realizations of the dynamics of the system from initial time O to
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time z. Finite-size scaling and equation (23) allow us to write

t
=) @4

with the scaling functiory’ becoming a non-zero constant when its argument goes to infinity
(i.e. whenr goes to infinity withL large but fixed). The dynamic exponenwill be taken
equal to%’ (as shown in [23, 24], this is the value of the dynamic exponent for the ASEP
without impurity). If we take the limitL. — oo first, with large but fixedr, we see that in
order to have a meaningful expressigi(x) has to behave like?? for small values ofx.
Thus for an infinite systemg?(¢) ~ t%/3.

In the casax = 1 — B (corresponding tp_ = p, in [9,12]) there is no shock in the
system but the fluctuations of the position of the second class particle can still be measured.
As the density is uniform throughout the system, this particle can be anywhere and therefore
o?(L, 1) = L?g({). The same argument as above provides #tfat) behaves like®? in
the infinite system.

It would be interesting to investigate time-dependent properties of the model (for
example, the behaviour of the first non-zero eigenvalue of the transition matrix {o.tjge
plane). We studied how the impurity diffuses in the systemY;ifdenotes the distance
forward travelled by the impurity at time (number of hops forward minus the number of
hops backwards), one can prove [18, 25] that for largthe variance ofY, is linear int¢,
the proportionality constamh («, 8) being the diffusion constant. For=1 andg =0 it
is known [18] thatA ~ L~Y/? (subdiffusive behaviour), whereas fer= 1 andg = 1, A
scales likeLY? (superdiffusive behaviour [25]). A precise investigation of this transition is
under progress; the matrix method can be used to computep).

The relation between the matrix technique and Bethe ansatz is an open problem. For
this model, it seems possible to write down the Bethe equations explicitly; using them to
characterize the steady state may help to answer this question.

UZ(L,t):Lf<

Acknowledgments

| thank B Derrida and V Hakim for helpful discussions. | am especially grateful to
C Godreche for his suggestions and his very careful and critical reading of the manuscript.

Appendix A. Formula for Zj n

From equation (4) and from the explicit representation (6), we can write

0 1— g—1 0 1—
V):KZ(ﬂ) lq) and (W|=KZ<
g=1 ﬂ p=1

where|q) is the gth vector of the basis in representation (6) amd is the pth vector of
the dual basis in the same representation.
Therefore we have the following identity:

00 0 1— p—1 1 q-1
Zin = (WIGLyIV) = Z ( “) (f) (pIGr.lg)

p—1
“) (pl (A1)

[°]

1 & 1
(1012)/3(1 ﬁ)ZZ< ) ( ﬂﬁ> (pIGLlg). (A2)

p=0gqg
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It can be directly checked by induction that

L L L L
WPiGLxla) = (N> (N +p - f]) - <N+ p) (L -N +Q) A3

satisfies the following recursion:

(pIGL.lq) = (PIGL-1n-1D|q) + (pIGL-1.NElq)
= (pIGr-1n-1lg — 1) +{p|Gr-1n-1lq) + (PIGL-1Nn|q)
+(plGr-1nlg +1) (A4)
with the condition thatp|G . y|q) vanishes whenever or g is zero. Here we have adopted

the convention that the binomial coefficiem) is zero wheneveM <0 orM > L.
Substituting the expression ¢p|G . y|g) into (A2), we obtain

N ) N 0 N (W

p=0¢=0

2L CEI Gy B 3( G N PR

The first term on the RHS of (A5) is modified as follows:

25 (5 (vi-d)

2 G GG

2@&)( )

2 () (L) (557)

M_l(,_;(,vir)(l;ﬂ)ré(ﬁ)(i“)r)
) 2l ) (0]

(A6)

Il
o

=

Il
™

Mgg

+

r

ot—i-ﬂ—

Substituting in (A5) leads to formula (9) of section 3.

Asymptotic expressions (10)—(13) are derived by making a saddle-point expansion in
each sum that appears in formula (9) 6y y. For instance one notices that the series
Z;" 0(Nﬂ))(1 =*)? is dominated by theg = 0 term if 1—a < p and by thep = N(1—a—p)
term if 1— o > p. Similar considerations apply to the other two sums.

Appendix B. Expression for the current of first class particles

In the steady state the current across any b@nd+ 1) of the lattice is constant:

J = Jl J+1 E(T, — 1 Tip1 = 0) + ,BE(Ti = 1, Tit1 = 2) (Bl)



The asymmetric exclusion model 5385

In the stationary state, the impurity can be on any offthel sites with the same probability
(the system is translation-invariant), so we have

1Z,any-1 1

- L-1,N-1 . (BZ)

B Z.y L+1

We transform the first term in the RHS of (B1) by conditioning on the position of the

impurity:

Eti=ltn1=2=Em=1tn=2E(T1=2) =

L
Er=111=0= Y Er=1.11=0n=2E®1=2
k=0;ksi,i+1
=——-) E(tj=1141=0/1p=2). (B3)
L+14

Now we use the matrix algebra (3), and the relatidh = D + E. Henceforth, we can
write:

N-1
W|G;_1.,DEG_;i_1N—p-1|V
E(Tj=1,7j+1:O|TO:2)=Z( | j—L1p L—j—1,N—p l| >

= ZLN
B NZ*<W|G,-71,,,DGL7,-71,N7,971|V> L WIGj-1pEG1j-1n-p-alV)
o ZiN ZiNn
_Zian Zi-an-1

E, 1y =1=2) +
ZL.Nn L.N
The subscript¥; _; y mean that we take the averages in a system of 5izel containing
N normal particles. These subscripts have been omitted when they were obvious.
We use the relations
L-1

E; 1 ny-1(tj =010 =2). (B4)

Y EianG=1n=2=N
j=1
and
L-1
Y Eraya(t=0rn=2=L-N
j=1

to conclude the derivation of formula (16).
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