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Abstract. We consider the one-dimensional asymmetric exclusion process with an impurity.
This model describes particles hopping in one direction with stochastic dynamics and a hard core
exclusion condition. The impurity hops with a rate different from that of the normal particles
and can be overtaken by these particles. We solve this model exactly and give its phase diagram.
In one of the phases the system presents a shock, i.e. a sharp discontinuity between a region of
high density of particles and a region of low density. Density profiles and relevant exponents are
explicitly calculated. These exact results for systems of finite size are consistent with anomalous
diffusion laws observed in infinite systems.

1. Introduction

The one-dimensional asymmetric simple-exclusion process (ASEP) is a model of particles
hopping in a preferred direction with stochastic dynamics and hard core exclusion. A
model of this kind usefully describes many different physical phenomena such as hopping
conductivity, diffusion of particles through narrow pores, growth processes and traffic flows
[1–4]. The mathematical relevance of the ASEP is that it is a discrete version of the Burgers
equation in the appropriate scaling limit, and a lot of work has been devoted to the derivation
of the hydrodynamical limit from microscopic dynamics [5, 6]. It is well known that the
Burgers equation exhibits shocks. The question of the existence and description of these
shock structures at the microscopic level has been studied both numerically and analytically
[7–15], and several models have been proposed. In [14], the authors calculated the shape of
a shock as seen from a second class particle. These second class particles overtake holes but
not normal particles, while normal (or first class) particles overtake both holes and second
class particles. A more direct way to provoke a shock [10] is to introduce a ‘slow’ link in
the system: the particles can cross this link with rater, which is less than the crossing rate
of all the other bonds (taken equal to 1). A mean-field analysis, supported by numerical
simulations, shows that a shock appears on the macroscopic level, whenr is less than a
critical valuerc (function of density). The authors measured the width of the shock as a
function of the sizeL of the system and showed that it scales asL1/3 or L1/2 depending
upon whether particle–hole symmetry exists or not (i.e. whether the density of particles is
equal to 1

2 or not). This model has not yet been solved exactly.
In this paper, we study the ASEP on a ring with one defective particle (say an impurity)

that jumps with a rateα (61) less than that of other particles and can be overtaken with
rateβ (61) by normal particles (this model has been introduced in [7] and [16]).

0305-4470/96/175375+12$19.50c© 1996 IOP Publishing Ltd 5375
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We use the matrix technique introduced in [14, 17, 18] for solving exactly certain
exclusion processes. This enables us to derive analytic formulae for the current in the
system and for the density profile (defined as the mean occupation of a site in the stationary
state). In the thermodynamic limit the system can exist in different phases in the(α, β) plane.
We determine the relevant correlation lengths and the critical exponents that characterize
the divergence of these correlation lengths on the lines bounding the different phases.

With this exact solution, we show that there exists one phase of the system in which
the impurity causes a shock, i.e. a spatial segregation between a region of high density of
particles and a region of low density. Because of the fluctuations of the position of the
impurity, the width of the shock always scales asL1/2 whether the particle–hole symmetry
exists or not.

This paper is organized as follows. In section 2 we describe the model and write the
weights of configurations in the stationary state as a trace of an infinite-dimensional matrix.
In section 3 we obtain exact results for finite systems and demonstrate the appearance of a
shock in the thermodynamic limit. Section 4 is devoted to the calculation of density profiles
and concluding remarks are given in the last section.

2. The model. Expression of the stationary state with a matrix ansatz

We shall consider the totally asymmetric exclusion process on a lattice ofL + 1 sites; the
sites are numbered from 0 toL. There areN ‘normal’ particles (06 N 6 L), denoted by 1,
in the system, and one impurity, denoted by 2. Each sitei is either occupied by one normal
particle, or by the impurity, or is empty. The lattice has periodic boundary conditions: site
i is the same as sitei + L + 1.

Stochastic dynamical rules govern the evolution of the system. During the infinitesimal
time step dt , any bond(i, i + 1) (with 0 6 i 6 L) evolves as follows:

10 → 01 with rate 1

20 → 02 with rateα

12 → 21 with rateβ

(1)

All other transitions are forbidden.
In the particular case whereα = 1 andβ = 0 the impurity is identical to a normal

particle; it can be considered as a tracer or a ‘tagged’ particle. The fluctuations of the
position of a tracer have been studied in [18]. Whenα = 1 andβ = 1, the impurity is a
second class particle which has been used in the study of shock fluctuations in [14].

We shall work in the relative frame of the impurity unless the contrary is specified,
i.e. we use the translation invariance of the system to relabel the sites, so that the impurity
always remains on site number 0.

The system has
(
L

N

) = L!
N !(L−N)! configurations. In the long time limit, the system

reaches a stationary state in which each configurationC has a stationary probabilityp(C).
The computation of thep(C)’s is non-trivial; they can be expressed [14, 16] as a trace of a
product of non-commuting operatorsD, E andA:

p(C) = 1

ZL,N

Tr

(
A

L∏
i=1

(τiD + (1 − τi)E)

)
(2)

whereτi = 1 if site i is occupied by a particle in configurationC andτi = 0 if it is empty.
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The matricesD, E andA satisfy the following algebra:

DE = D + E

DA = 1

β
A

AE = 1

α
A.

(3)

The normalization factorZL,N ensures that
∑

C p(C) = 1 and can be written as a trace:

ZL,N = Tr(AGL,N) (4)

with

GL,N =
∑

{τi=0,1}
δ

(
N −

L∑
i=1

τi

) L∏
i=1

(τiD + (1 − τi)E). (5)

Hereδ(x) is the Kroneckerδx,0; hence the matrixGL,N is the sum of all matrices formed
by multiplying N D’s and (L − N) E’s in all possible orders. The fact that the weights
p(C) given by (2) are stationary can be proved by using the same arguments as given in
[14, 17, 19]. Therefore we shall not give the proof here. As shown in [17] the matricesD

andE have to be infinite-dimensional unlessα +β = 1. A useful representation of algebra
(3) is the following:

D =


1 1 0 0 . .

0 1 1 0
0 0 1 1
0 0 0 1 .

. . .

. .

 E =


1 0 0 0 . .

1 1 0 0
0 1 1 0
0 0 1 1
. . .

. . .

 A = |V 〉〈W | (6)

where

〈W | = κ

(
1,

(
1 − α

α

)
,

(
1 − α

α

)2

. .

)
and |V 〉 = κ



1(
1 − β

β

)
(

1 − β

β

)2

.

.


.

To ensure that〈W |V 〉 = 1, we takeκ2 = (α + β − 1)/αβ. We remark that|V 〉 is a right
eigenvector ofD and that〈W | is a left eigenvector ofE:

D|V 〉 = 1

β
|V 〉 (7)

〈W |E = 1

α
〈W |. (8)

3. Exact results for the current of first class particles and for the speed of the
impurity

The fundamental quantity to calculate is the normalization factorZL,N = Tr(AGL,N) =
〈W |GL,N |V 〉 which plays a role analogous to the partition function in equilibrium statistical
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mechanics. The following exact formula is derived in appendix A:

ZL,N = αβ

(1 − α)(1 − β)

(
L

N

)( ∞∑
p=0

(
L

N + p

) (
1 − α

α

)p

+
∞∑

q=1

(
L

L − N + q

) (
1 − β

β

)q )

+ 1 − α − β

(1 − α)(1 − β)

∞∑
p=0

∞∑
q=0

(
L

N + p

)(
L

L − N + q

) (
1 − α

α

)p (
1 − β

β

)q

.

(9)

From this exact formula the asymptotic behaviour ofZL,N in the thermodynamic limit
(L → ∞, N → ∞, the densityρ = N

L+1 being constant) can be extracted. Different forms
are obtained in different ranges ofα, β andρ:
• ρ < β < 1 − α andρ < 1 − α < β

ZL,N ' β(1 − α − ρ)

(1 − α)(β − ρ)

(
L

N

)
αL−N(1 − α)N

(10)

• β < ρ < 1 − α

ZL,N ' (1 − α − β)

(1 − α)(1 − β)

1

αL−N(1 − α)NβN(1 − β)L−N
(11)

• 1 − α < ρ < β

ZL,N ' αβ(α + β − 1)ρ(1 − ρ)

(β − ρ)2(α + ρ − 1)2

(
L

N

)2
L

(12)

• β < 1 − α < ρ and 1− α < β < ρ

ZL,N ' α(ρ − β)

(1 − β)(ρ + α − 1)

(
L

N

)
βN(1 − β)L−N

. (13)

The process is invariant when the particles and holes are interchanged, the direction of
motion reversed andα andβ exchanged (charge conjugation and reflection symmetry [20]).
Analytically, the following symmetry is thus satisfied:

N → L − N

ρ → 1 − ρ

α → β

site numberi → site numberL + 1 − i.

(14)

This fact can be checked on equations (10) to (13).
In the stationary state, the speedV of the impurity in the reference frame of the lattice

can be expressed with the help of algebra (3) as follows:

V = αE(τi+1 = 0|τi = 2) − βE(τi−1 = 1|τi = 2)

= α〈W |EGL−1,N |V 〉 − β〈W |GL−1,N−1D|V 〉
ZL,N

= ZL−1,N − ZL−1,N−1

ZL,N

. (15)

HereE is the expectation in the stationary state, andE(|) the conditional expectation.
Similarly the current of the first class particles in the frame of the lattice is

J = ρ
ZL−1,N

ZL,N

+ (1 − ρ)
ZL−1,N−1

ZL,N

= ρV + ZL−1,N−1

ZL,N

. (16)
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The second term on the RHS of (16) has a direct interpretation: it is the current of first class
particles in the relative frame of the impurity. The proof of (16) is given in appendix B.

With the help of the asymptotic expressions forZL,N (10)–(13), we obtain the following
formulae for the currentJ and the speedV :
• for ρ < β < 1 − α andρ < 1 − α < β: J = ρ(1 − ρ) andV = α − ρ

• for β < ρ < 1 − α: J = ρ(α − β) + β(1 − α) andV = α − β

• for 1 − α < ρ < β: J = ρ(1 − ρ) andV = 1 − 2ρ

• for β < 1 − α < ρ and 1− α < β < ρ: J = ρ(1 − ρ) andV = 1 − β − ρ

The results for the caseβ < 1 − α were previously obtained in [16] where a different
expression was used forZL,N . The derivatives of the current and the speed are discontinuous
at the boundaries of the domains that appear above; therefore, following [21], the phase
transition can be considered to be of first order. In the phaseβ < ρ < 1 − α, the speed of
the impurity does not depend upon the densityρ of the particles [16]: this suggests that the
impurity moves as if the site ahead of it was always empty and the site behind it always
occupied. In the next section, by calculating explicitly the density profile in the whole range
of α andβ, we show that this phase presents a density shock: the particles pile up behind
the impurity.

4. Computation of the density profile

We denote byni the expectation that sitei is occupied in the stationary state, knowing that
the impurity is at site zero. With the help of the algebra (3), it is straightforward to write
the following identity forni :

ni = E(τi = 1|τ0 = 2) =
N−1∑
p=0

〈W |Gi−1,pDGL−i,N−p−1|V 〉
ZL,N

. (17)

Here we have the convention thatGk,q = 0 wheneverq < 0 or q > k. It is not easy to
calculateni from (17); however, its discrete derivative can be brought to a much simpler
form:

ni − ni+1 = 1

ZL,N

〈W |
N−1∑
p=0

Gi−1,pDGL−i,N−p−1 − Gi,pDGL−i−1,N−p−1|V 〉. (18)

We substitute the general identityGj,k = Gj−1,k−1D + Gj−1,kE in equation (18):
N−1∑
p=0

Gi−1,pDGL−i,N−p−1 − Gi,pDGL−i−1,N−p−1

=
N−1∑
p=0

Gi−1,pD(DGL−i−1,N−p−2 + EGL−i−1,N−p−1)

−(Gi−1,p−1D + Gi−1,pE)DGL−i−1,N−p−1.

The first and third terms cancel each other. The explicit representation (6) provides that
DE − ED = |1〉〈1|. We thus obtain

ni − ni+1 =
N−1∑
p=0

〈W |Gi−1,p|1〉〈1|GL−i−1,N−p−1|V 〉
ZL,N

. (19)

The values ofn1 andnL can be determined directly:

n1 = Tr(ADGL−1,N−1)

ZL,N

= 1 − Tr(AEGL−1,N )

ZL,N

= 1 − 1

α

ZL−1,N

ZL,N

(20)
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nL = Tr(DAGL−1,N−1)

ZL,N

= 1

β

ZL−1,N−1

ZL,N

. (21)

Expressions (19) and (20) or (21) allow a full knowledge of the density profile
ni(i = 1, . . . , L) for any finite system and can be used for exact numerical computations.

We calculated the density profile explicitly in the thermodynamic limit with the help of
the asymptotic expressions ofZL,N given in (10)–(13). These asymptotic expressions were
substituted in formula (19). After carefully determining the term that dominates the sum in
different sectors ofα, β andρ, the saddle point method is applied and the density profile is
obtained. We thus derived the phase diagram of the system given in figure 1. There are six
distinct phases. By using the symmetry (14), it is enough to describe precisely only four
out of the six phases.

I

II

III

IV

V
VI

ρ

1−ρ α

β

1

1

Figure 1. The phase diagram of the system.

The phase diagram is divided into two domains by the lineβ = 1− α. On this line the
matricesD, E andA can be chosen as scalars:D = 1

β
, E = 1

α
, A = 1; each configuration

then has the same stationary probability,p(C) = 1/
(
L

N

)
and the density profile is flat, i.e.

ni = ρ for all i.

In the domainβ > 1 − α (figure 2), the impurity creates a local disturbance in the
system and the density profile in the bulk is flat in the thermodynamic limit. It is possible
to distinguish three phases in this domain.

4.1. Phase I.1 − α < β < ρ

In this case,n1 = 1 − 1−β

α
(1 − ρ) andnL = ρ; the density profile decreases exponentially

from n1 to its bulk valueρ; the disturbance due to the impurity has a characteristic length
ξ such that in the intermediate scale 1� i � L:
• when βρ

(1−β)(1−ρ)
< ( 1−α

α
)2, (ni −ρ) ∼ exp(−i/ξ) with ξ−1 = − ln(1− (ρ −1+α)

1−α−β

α(1−α)
).
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0
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‘II’

Figure 2. Typical density profiles in theβ > 1 − α sector withL = 70 andρ = 0.5. The
curves represent the probability (vertical axis) that a sitei (horizontal axis) is occupied in the
stationary state. For curve I in phase I,α = 0.9 andβ = 0.4. For curve II in phase II,α = 1
andβ = 1.

• When βρ

(1−β)(1−ρ)
> ( 1−α

α
)2, (ni − ρ) ∼ 1

i1/2 exp(−i/ξ) with ξ−1 = −2 ln(
√

βρ +√
(1 − β)(1 − ρ)). In this case, we note thatξ diverges as4β(1−β)

(ρ−β)2 whenρ → β.

4.2. Phase II.1 − α < ρ < β

Heren1 = 1− 1
α
(1−ρ)2 > nL = ρ2

β
. There is no longer a characteristic length that measures

the size of the disturbance in the vicinity of the impurity. The density profile reaches its
bulk valueρ algebraically likei−1/2 at a distancei from the impurity; for 1� i � L, we
have

ni − ni+1 = nL−i+1 − nL−i '
√

ρ(1 − ρ)

4π

1

i3/2
. (22)

This formula agrees with the one derived in [14] for the special caseα = β = 1.

4.3. Phase III.ρ < 1 − α < β

By (14), this phase is symmetric to phase I.

In the domainβ < 1−α (figure 3), the impurity plays the role of a moving obstacle that
can affect the system on a global scale by provoking a discontinuity in the density profile
of first class particles.

4.4. Phase IV.ρ < β < 1 − α

Here n1 = ρ is less thannL = ρ 1−α
β

, and the characteristic length measuring the range

of the effect of the impurity is given byξ−1 = − ln(1 − (β − ρ)
1−β−α

β(1−β)
). That correlation

length diverges as β(1−β)

(β−ρ)(1−α−β)
whenρ → β.
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‘V’

Figure 3. Density profiles in theβ < 1 − α sector withL = 70 andρ = 0.5. For curve IV in
phase IV,α = 0.1 andβ = 0.7. For curve V in phase V (the shock),α = 0.25 andβ = 0.25.

4.5. Phase V.β < ρ < 1 − α

In this case, we haven1 = β and nL = 1 − α. The presence of the unique impurity is
enough to provoke a macroscopic shock in the system; a low density regionρl = β ranging
from site 1 to sitex0L is separated by a sharp interface from a region of high density
ρh = 1− α ranging from sitex0L to siteL. The position of the shockx0 is determined by
ρ = βx0 + (1 − α)(1 − x0). WhenL is large, the following expression can be derived in
terms of the rescaled variablex = i/L:

dn(x)

dx
'

√
L

2π(ρ(α − β) + β(1 − α))
(1 − α − β)2 exp

(
− L(1 − α − β)2(x − x0)

2

2(ρ(α − β) + β(1 − α))

)
.

(23)

Asymptotically,n(x) is an error function interpolating between the regions of low and high
density with width scaling asL1/2.

4.6. Phase VI.β < 1 − α < ρ.

By (14), this phase is symmetric to phase IV.

5. Discussion and conclusion

The exact results obtained above for a finite system can be related, through a finite-size
scaling analysis, to results given in [9, 12] for infinite systems. In these articles, the
authors consider exclusion processes on the infinite line with initial shock configurations
corresponding to an average densityρ− (ρ+) on the left (right) of the origin; they track
the shock with the help of a second class particle. The fluctuations of the position of that
second class particle can be identified with the fluctuations of the shock [22]. For a system
of finite sizeL, let us denote byσ(L, t) the width of the shock measured at timet and
averaged over all possible realizations of the dynamics of the system from initial time 0 to
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time t. Finite-size scaling and equation (23) allow us to write

σ 2(L, t) = Lf

(
t

Lz

)
(24)

with the scaling functionf becoming a non-zero constant when its argument goes to infinity
(i.e. whent goes to infinity withL large but fixed). The dynamic exponentz will be taken
equal to 3

2 (as shown in [23, 24], this is the value of the dynamic exponent for the ASEP
without impurity). If we take the limitL → ∞ first, with large but fixedt , we see that in
order to have a meaningful expression,f (x) has to behave likex2/3 for small values ofx.
Thus for an infinite system,σ 2(t) ∼ t2/3.

In the caseα = 1 − β (corresponding toρ− = ρ+ in [9, 12]) there is no shock in the
system but the fluctuations of the position of the second class particle can still be measured.
As the density is uniform throughout the system, this particle can be anywhere and therefore
σ 2(L, t) = L2g( t

Lz ). The same argument as above provides thatσ 2(t) behaves liket4/3 in
the infinite system.

It would be interesting to investigate time-dependent properties of the model (for
example, the behaviour of the first non-zero eigenvalue of the transition matrix in the(α, β)

plane). We studied how the impurity diffuses in the system: ifYt denotes the distance
forward travelled by the impurity at timet (number of hops forward minus the number of
hops backwards), one can prove [18, 25] that for larget , the variance ofYt is linear in t ,
the proportionality constant1(α, β) being the diffusion constant. Forα = 1 andβ = 0 it
is known [18] that1 ∼ L−1/2 (subdiffusive behaviour), whereas forα = 1 andβ = 1, 1

scales likeL1/2 (superdiffusive behaviour [25]). A precise investigation of this transition is
under progress; the matrix method can be used to compute1(α, β).

The relation between the matrix technique and Bethe ansatz is an open problem. For
this model, it seems possible to write down the Bethe equations explicitly; using them to
characterize the steady state may help to answer this question.
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Appendix A. Formula for ZL,N

From equation (4) and from the explicit representation (6), we can write

|V 〉 = κ

∞∑
q=1

(
1 − β

β

)q−1

|q〉 and 〈W | = κ

∞∑
p=1

(
1 − α

α

)p−1

〈p| (A1)

where |q〉 is the qth vector of the basis in representation (6) and〈p| is the pth vector of
the dual basis in the same representation.

Therefore we have the following identity:

ZL,N = 〈W |GL,N |V 〉 = κ2
∞∑

p=1

∞∑
q=1

(
1 − α

α

)p−1 (
1 − β

β

)q−1

〈p|GL,N |q〉

= α + β − 1

(1 − α)(1 − β)

∞∑
p=0

∞∑
q=0

(
1 − α

α

)p (
1 − β

β

)q

〈p|GL,N |q〉. (A2)
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It can be directly checked by induction that

〈p|GL,N |q〉 =
(

L

N

)(
L

N + p − q

)
−

(
L

N + p

)(
L

L − N + q

)
(A3)

satisfies the following recursion:

〈p|GL,N |q〉 = 〈p|GL−1,N−1D|q〉 + 〈p|GL−1,NE|q〉
= 〈p|GL−1,N−1|q − 1〉 + 〈p|GL−1,N−1|q〉 + 〈p|GL−1,N |q〉

+〈p|GL−1,N |q + 1〉 (A4)

with the condition that〈p|GL,N |q〉 vanishes wheneverp or q is zero. Here we have adopted
the convention that the binomial coefficient

(
L

M

)
is zero wheneverM < 0 or M > L.

Substituting the expression of〈p|GL,N |q〉 into (A2), we obtain

ZL,N = α + β − 1

(1 − α)(1 − β)

[(
L

N

) ∞∑
p=0

∞∑
q=0

(
1 − α

α

)p (
1 − β

β

)q (
L

N + p − q

)

−
∞∑

p=0

(
L

N + p

) (
1 − α

α

)p ∞∑
q=0

(
1 − β

β

)q (
L

L − N + q

)]
. (A5)

The first term on the RHS of (A5) is modified as follows:
∞∑

p=0

∞∑
q=0

(
1 − α

α

)p (
1 − β

β

)q (
L

N + p − q

)

=
∞∑

r=−∞

∞∑
p>max(0,r)

(
1 − α

α

)p (
1 − β

β

)p−r (
L

N + r

)

=
−1∑

r=−∞

∞∑
p=0

(
L

N + r

) (
1 − α

α

)p (
1 − β

β

)p−r

+
∞∑

r=0

∞∑
p=r

(
L

N + r

) (
1 − α

α

)p (
1 − β

β

)p−r

= αβ

α + β − 1

( −1∑
r=−∞

(
L

N + r

) (
1 − β

β

)−r

+
∞∑

r=0

(
L

N + r

) (
1 − α

α

)r)
= αβ

α + β − 1

[ ∞∑
r=0

(
L

N + r

) (
1 − α

α

)r

+
∞∑

r=1

(
L

L − N + r

) (
1 − β

β

)r ]
.

(A6)

Substituting in (A5) leads to formula (9) of section 3.
Asymptotic expressions (10)–(13) are derived by making a saddle-point expansion in

each sum that appears in formula (9) forZL,N . For instance one notices that the series∑∞
p=0

(
L

N+p

)
( 1−α

α
)p is dominated by thep = 0 term if 1−α < ρ and by thep = N(1−α−ρ)

term if 1− α > ρ. Similar considerations apply to the other two sums.

Appendix B. Expression for the current of first class particles

In the steady state the current across any bond(i, i + 1) of the lattice is constant:

J = J i,i+1 = E(τi = 1, τi+1 = 0) + βE(τi = 1, τi+1 = 2). (B1)
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In the stationary state, the impurity can be on any of theL+1 sites with the same probability
(the system is translation-invariant), so we have

E(τi = 1, τi+1 = 2) = E(τi = 1|τi+1 = 2)E(τi+1 = 2) = 1

β

ZL−1,N−1

ZL,N

1

L + 1
. (B2)

We transform the first term in the RHS of (B1) by conditioning on the position of the
impurity:

E(τi = 1, τi+1 = 0) =
L∑

k=0;k 6=i,i+1

E(τi = 1, τi+1 = 0|τk = 2)E(τk = 2)

= 1

L + 1

L−1∑
j=1

E(τj = 1, τj+1 = 0|τ0 = 2). (B3)

Now we use the matrix algebra (3), and the relationDE = D + E. Henceforth, we can
write:

E(τj = 1, τj+1 = 0|τ0 = 2) =
N−1∑
p=0

〈W |Gj−1,pDEGL−j−1,N−p−1|V 〉
ZL,N

=
N−1∑
p=0

〈W |Gj−1,pDGL−j−1,N−p−1|V 〉
ZL,N

+ 〈W |Gj−1,pEGL−j−1,N−p−1|V 〉
ZL,N

= ZL−1,N

ZL,N

EL−1,N (τj = 1|τ0 = 2) + ZL−1,N−1

ZL,N

EL−1,N−1(τj = 0|τ0 = 2). (B4)

The subscriptsEL−1,N mean that we take the averages in a system of sizeL− 1 containing
N normal particles. These subscripts have been omitted when they were obvious.

We use the relations
L−1∑
j=1

EL−1,N (τj = 1|τ0 = 2) = N

and
L−1∑
j=1

EL−1,N−1(τj = 0|τ0 = 2) = L − N

to conclude the derivation of formula (16).
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